Nepal Water Supply Corporation

Scheme of Examinations

<table>
<thead>
<tr>
<th></th>
<th>Paper</th>
<th>Theory</th>
<th>Practical</th>
<th>Written Exam</th>
<th>Technical Writing</th>
<th>Case Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical</td>
<td>Computer Hardware</td>
<td>100</td>
<td>20</td>
<td>100 X 1 = 100</td>
<td>Technical Writing</td>
<td>Case Study</td>
</tr>
<tr>
<td>Written Exam</td>
<td>Written Exam (Multiple Choice)</td>
<td>100 X 1 = 100</td>
<td></td>
<td></td>
<td>100 X 1 = 100</td>
<td>100 X 1 = 100</td>
</tr>
</tbody>
</table>

Notes:

1. Written Exam will be in Nepali.
2. Written Exam will be in English.
3. Written Exam will consist of 20 multiple choice questions.
4. Written Exam will consist of 100 marks.
5. Written Exam will be in English.
6. Written Exam will be in Nepali.
7. Written Exam will be in English.
8. Written Exam will be in Nepali.
9. Written Exam will be in English.
10. Written Exam will be in Nepali.

Questions:

1. 100 marks
2. 100 marks
3. 100 marks
4. 100 marks
5. 100 marks
6. 100 marks
7. 100 marks
8. 100 marks
9. 100 marks
10. 100 marks

Total: 500 marks
Nepal Water Supply Corporation

1. Computer Networks
 1.1 Protocol stack, switching
 1.2 Link Layer: services, error detection and correction, multiple access protocols, LAN addressing and ARP (Address Resolution Protocol), Ethernet, CSMA/CD multiple access protocol, Hubs, Bridges, and Switches, Wireless LANs, PPP (Point to Point Protocol), Wide area protocols
 1.3 Network Layer :services, datagram and virtual circuits, routing principles and algorithms, Internet Protocol (IP), IP addressing, IP transport, fragmentation and assembly, ICMP (Internet Control Message Protocol), routing on the internet, RIP (Routing Information Protocol), OSPF (Open Shortest Path First), router internals, IPv6
 1.4 Transport Layer: principles, multiplexing and demultiplexing, UDP, TCP, flow control, principles of congestion control, TCP congestion control
 1.5 Application Layer : Web and Web caching, FTP (File Transfer Protocol), Electronic mail, DNS (Domain Name Service), socket programming
 1.6 Distributed system, Clusters

2. Structured and object oriented programming
 2.1 Data types, ADT
 2.2 Operators, variables and assignments, control structures
 2.3 Procedure/function
 2.4 Class definitions, encapsulation, inheritance, object composition, Polymorphism
 2.5 Pattern and framework

3. Artificial Intelligence
 3.1 Search
 3.2 Natural Language Processing
 3.3 Game Playing
 3.4 Learning
 3.5 Automated reasoning
 3.6 Planning
 3.7 Vision and Robotics

4. Data structures
 4.1 General concepts : Abstract data Type, Time and space analysis of algorithms, Big oh and theta notations, Average, best and worst case analysis
 4.2 Linear data structures
 4.3 Trees: General and binary trees, Representations and traversals, Binary search trees, balancing trees, AVL trees, 2-3 trees, red-black trees, self-adjusting trees, Splay Trees
 4.4 Algorithm design techniques: Greedy methods, Priority queue search, Exhaustive search, Divide and conquer, Dynamic programming, Recursion
 4.5 Hashing
 4.6 Graphs and digraphs
 4.7 Sorting

5. Computer Architecture and organization and micro-processors
5.1 Basic Structures: sequential circuits, design procedure, state table and state diagram, von Neumann / Harvard architecture, RISC/CISC architecture

5.2 Addressing Methods and Programs, representation of data, arithmetic operations, basic operational concepts, bus structures, instruction, cycle and excitation cycle.
5.3 Processing Unit: instruction formats, arithmetic and logical instruction.
5.4 Addressing modes
5.5 Input Output Organization: I/O programming, memory mapped I/O, basic interrupt system, DMA
5.6 Arithmetic
5.7 Memory Systems
5.8 808X and Intel microprocessors: programming and interfacing

6. Digital Design
6.1 Digital and Analog Systems, Number Systems.
6.2 Logic Elements
6.3 Combinational Logic Circuits
6.4 Sequential Logic
6.5 Arithmetic Circuits
6.6 MSI Logic circuits
6.7 Counters and Registers
6.8 IC logic families
6.9 Interfacing with Analog Devices
6.10 Memory Devices

7. Software Engineering principles (System analysis and design)
7.1 Software process: The software lifecycle models, risk-driven approaches
7.2 Software Project management: Relationship to lifecycle, project planning, project control, project organization, risk management, cost models, configuration management, version control, quality assurance, metrics
7.3 Software requirements: Requirements analysis, requirements solicitation, analysis tools, requirements definition, requirements specification, static and dynamic specifications, requirements review.
7.4 Software design: Design for reuse, design for change, design notations, design evaluation and validation
7.5 Implementation: Programming standards and procedures, modularity, data abstraction, static analysis, unit testing, integration testing, regression testing, tools for testing, fault tolerance
7.6 Maintenance: The maintenance problem, the nature of maintenance, planning for maintenance
7.7 SE issues: Formal methods, tools and environments for software engineering, role of programming paradigm, process maturity and Improvement, ISO standards, SEI-CMM, CASE tools

8. Database Management System
8.1 Introduction: The relational model, ER model, SQL, Functional dependency and relational database design, File structure
8.2 Transaction Management and Concurrency Control: Concurrent execution of the user programs, transactions, Concurrency control techniques
8.3 Crash Recovery: types of failure, Recovery techniques
8.4 Query Processing and Optimization
8.5 Indexing: Hash based indexing, Tree based indexing
8.6 Distributed Database Systems and Object oriented database system
8.7 Data Mining and Data Warehousing
8.8 Security Management System
9. Operating System
9.1 Processes and Threads: Symmetric Multiprocessing, Micro-kernels, Concurrency, Mutual Exclusion and Synchronization, Deadlock.
9.2 Scheduling
9.3 Memory Management
9.5 Distributed Systems: Distributed Message passing, RPC, Client/Server Computing, Clusters.

10. Theory of Computation
10.1 BNF, Languages, grammars
10.2 DFA and N DFA, regular expressions, regular grammars
10.3 Closure, homomorphism
10.4 Pigeonhole principle, pumping lemma
10.5 CFGs, Parsing and ambiguity, Pushdown automata, NPDA s & CFGs
10.6 Pumping lemma
10.7 Turing machines
10.8 Recursively enumerable languages Unrestricted grammars
10.9 The Chomsky hierarchy, Undecidable problems, Church's Thesis
10.10 Complexity Theory, P and NP

11. Compiler design
11.1 The Structure of a Compiler
11.2 Lexical Analyzer
11.3 Top down Parsing/ Bottom up Parsing
11.4 Syntax Directed Translation
11.5 Types and Type Checking
11.6 Run-Time Storage Administration
11.7 Intermediate Code generation
11.8 Data-Flow Analysis and Code Optimizations
11.9 Architecture and recent development on compilers

12.1 Graphics concepts
12.2 Input devices and techniques
12.3 Basic raster graphics algorithms and primitives
12.4 Scan conversion
12.5 Graphics hardware
12.6 2D geometrical transformations and viewing
12.7 3D geometry and viewing
12.8 Hierarchical modeling
12.9 Projections
12.10 Hidden surface removal
12.11 Shading and rendering

13. Basic Electrical & Electronics
13.1 Electrical
13.1.1 Basic Circuit Theory
13.1.2 AC circuit Fundamentals
13.1.3 Magnetic circuits and Transformers
13.1.4 Transient Analysis, Filters
13.2 Electronics
 13.2.1 Semiconductors, Diodes and Diode Circuits, Transistors,
 13.2.2 Transistor modeling
 13.2.3 Biasing and Amplification
 13.2.4 Small Signal amplifiers and frequency response
 13.2.5 Large signal amplifiers, feedback amplifiers and Oscillators
 13.2.6 Operational amplifiers

14. Principles of Electronic Communications
 14.1 Block Diagram of analog/ digital communication system
 14.2 Analog and Digital modulation techniques
 14.3 Fundamentals of Error Detection and Correction
 14.4 Performance evaluation of analog and digital communication systems: SNR and BER

15. Emerging Technology and Electives
 15.1 Modeling and simulation
 15.2 Parallel and distributed computing
 15.3 High speed networks
 15.4 Artificial Neural Network and Computer Vision
 15.5 Adaptive web technology
 15.6 Software Architecture
 15.7 Distributed Object technology (ORB, DCOM)
 15.8 Speech signal processing
 15.9 Cryptography and network security
 15.10 E-commerce
 15.11 Software project management
 15.12 Embedded systems
 15.13 Image processing
 15.14 Multimedia
 15.15 Expert system
 15.16 GIS/ Remote sensing/ GPS

16. Reasoning
 16.1 Analytical and logical reasoning — √ 0
 16.2 Quantitative Test — F 0

This section covers the examinee's reasoning aptitude as well as the presence of mind. Reasoning is to be done by reading a passage and answering the multiple choice question where as quantitative test is carried out by solving the mathematical problem (which needs no advanced level mathematical background)
Nepal Water Supply Corporation

1. Computer Networks
 1.1 Protocol stack, switching
 1.2 Link Layer: services, error detection and correction, multiple access protocols, LAN addressing and ARP (Address Resolution Protocol), Ethernet, CSMA/CD multiple access protocol, Hubs, Bridges, and Switches, Wireless LANs, PPP (Point to Point Protocol), Wide area protocols
 1.3 Network Layer: services, datagram and virtual circuits, routing principles and algorithms, Internet Protocol (IP), IP addressing, IP transport, fragmentation and assembly, ICMP (Internet Control Message Protocol), routing on the internet, RIP (Routing Information Protocol), OSPF (Open Shortest Path First), router internals, IPv6
 1.4 Transport Layer: principles, multiplexing and demultiplexing, UDP, TCP, flow control, principles of congestion control, TCP congestion control
 1.5 Application Layer: Web and Web caching, FTP (File Transfer Protocol), Electronic mail, DNS (Domain Name Service), socket programming
 1.6 Distributed system, Clusters

2. Structured and object oriented programming
 2.1 Data types, ADT
 2.2 Operators, variables and assignments, control structures
 2.3 Procedure/function
 2.4 Class definitions, encapsulation, inheritance, object composition, Polymorphism
 2.5 Pattern and framework

3. Artificial Intelligence
 3.1 Search
 3.2 Natural Language Processing
 3.3 Game Playing
 3.4 Learning
 3.5 Automated reasoning
 3.6 Planning
 3.7 Vision and Robotics

4. Data structures
 4.1 General concepts: Abstract data Type, Time and space analysis of algorithms, Big oh and theta notations, Average, best and worst case analysis
 4.2 Linear data structures
 4.3 Trees: General and binary trees, Representations and traversals, Binary search trees, balancing trees, AVL trees, 2-3 trees, red-black trees, self-adjusting trees, Splay Trees
 4.4 Algorithm design techniques: Greedy methods, Priority queue search, Exhaustive search, Divide and conquer, Dynamic programming, Recursion
 4.5 Hashing
 4.6 Graphs and digraphs
 4.7 Sorting
1. Computer Networks
 1.1 Protocol stack, switching
 1.2 Link Layer: services, error detection and correction, multiple access protocols, LAN addressing and ARP (Address Resolution Protocol), Ethernet, CSMA/CD, multiple access protocol, Hubs, Bridges, and Switches, Wireless LANs, PPP (Point to Point Protocol), Wide area protocols
 1.3 Network Layer: services, datagram and virtual circuits, routing principles and algorithms, Internet Protocol (IP), IP addressing, IP transport, fragmentation and assembly, ICMP (Internet Control Message Protocol), routing on the internet, RIP (Routing Information Protocol), OSPF (Open Shortest Path First), router internals, IPv6
 1.4 Transport Layer: principles, multiplexing and demultiplexing, UDP, TCP, flow control, principles of congestion control, TCP congestion control
 1.5 Application Layer: Web and Web caching, FTP (File Transfer Protocol), Electronic mail, DNS (Domain Name Service), socket programming
 1.6 Distributed system, Clusters

2. Structured and object oriented programming
 2.1 Data types, ADT
 2.2 Operators, variables and assignments, control structures
 2.3 Procedure/function
 2.4 Class definitions, encapsulation, inheritance, object composition, Polymorphism
 2.5 Pattern and framework

3. Artificial Intelligence
 3.1 Search
 3.2 Natural Language Processing
 3.3 Game Playing
 3.4 Learning
 3.5 Automated reasoning
 3.6 Planning
 3.7 Vision and Robotics

4. Data structures
 4.1 General concepts: Abstract data Type, Time and space analysis of algorithms, Big O and theta notations, Average, best and worst case analysis
 4.2 Linear data structures
 4.3 Trees: General and binary trees, Representations and traversals, Binary search trees, balancing trees, AVL trees, 2-3 trees, red-black trees, self-adjusting trees, Splay Trees
 4.4 Algorithm design techniques: Greedy methods, Priority queue search, Exhaustive search, Divide and conquer, Dynamic programming, Recursion
 4.5 Hashing
 4.6 Graphs and digraphs
 4.7 Sorting
5. Computer Architecture and organization and micro-processors
 5.1 Basic Structures: sequential circuits, design procedure, state table and state diagram, von Neumann / Harvard architecture, RISC/CISC architecture
 5.2 Addressing Methods and Programs, representation of data, arithmetic operations, basic operational concepts, bus structures, instruction, cycle and excitation cycle
 5.3 Processing Unit: instruction formats, arithmetic and logical instruction
 5.4 addressing modes
 5.5 Input Output Organization: I/O programming, memory mapped I/O, basic interrupt system, DMA
 5.6 Arithmetic
 5.7 Memory Systems
 5.8 808X and Intel microprocessors: programming and interfacing

6. Digital Design
 6.1 Digital and Analog Systems, Number Systems
 6.2 Logic Elements
 6.3 Combinational Logic Circuits
 6.4 Sequential Logic
 6.5 Arithmetic Circuits
 6.6 MSI Logic circuits
 6.7 Counters and Registers
 6.8 IC logic families
 6.9 Interfacing with Analog Devices
 6.10 Memory Devices

7. Software Engineering principles (System analysis and design)
 7.1 Software process: The software lifecycle models, risk-driven approaches
 7.2 Software Project management: Relationship to lifecycle, project planning, project control, project organization, risk management, cost models, configuration management, version control, quality assurance, metrics
 7.3 Software requirements: Requirements analysis, requirements solicitation, analysis tools, requirements definition, requirements specification, static and dynamic specifications, requirements review.
 7.4 Software design: Design for reuse, design for change, design notations, design evaluation and validation
 7.5 Implementation: Programming standards and procedures, modularity, data abstraction, static analysis, unit testing, integration testing, regression testing, tools for testing, fault tolerance
 7.6 Maintenance: The maintenance problem, the nature of maintenance, planning for maintenance
 7.7 SE issues: Formal methods, tools and environments for software engineering, role of programming paradigm, process maturity and Improvement, ISO standards, SEI-CMM, CASE tools

8. Database Management System
 8.1 Introduction: The relational model, ER model, SQL, Functional dependency and relational database design, File structure
 8.2 Transaction Management and Concurrency Control: Concurrent execution of the user programs, transactions, Concurrency control techniques
 8.3 Crash Recovery: types of failure, Recovery techniques
 8.4 Query Processing and Optimization
 8.5 Indexing: Hash based indexing, Tree based indexing
 8.6 Distributed Database Systems and Object oriented database system
 8.7 Data Mining and Data Warehousing
 8.8 Security Management System
9. Operating System
 9.1 Processes and Threads: Symmetric Multiprocessing, Micro-kernels, Concurrency, Mutual Exclusion and Synchronization, Deadlock.
 9.2 Scheduling
 9.3 Memory Management
 9.5 Distributed Systems: Distributed Message passing, RPC, Client/Server Computing, Clusters.

10. Theory of Computation
 10.1 BNF, Languages, grammars
 10.2 DFA and N DFA, regular expressions, regular grammars
 10.3 Closure, homomorphism
 10.4 Pigeonhole principle, pumping lemma
 10.5 CFGs, Parsing and ambiguity, Pushdown automata, NPDA & CFGs
 10.6 Pumping lemma
 10.7 Turing machines
 10.8 Recursively enumerable languages Unrestricted grammars
 10.9 The Chomsky hierarchy, Undecidable problems, Church's Thesis
 10.10 Complexity Theory, P and NP

11. Compiler design
 11.1 The Structure of a Compiler
 11.2 Lexical Analyzer
 11.3 Top down Parsing/ Bottom up Parsing
 11.4 Syntax Directed Translation
 11.5 Types and Type Checking
 11.6 Run-Time Storage Administration
 11.7 Intermediate Code generation
 11.8 Data-Flow Analysis and Code Optimizations
 11.9 Architecture and recent development on compilers

 12.1 Graphics concepts
 12.2 Input devices and techniques
 12.3 Basic raster graphics algorithms and primitives
 12.4 Scan conversion
 12.5 Graphics hardware
 12.6 2D geometrical transformations and viewing
 12.7 3D geometry and viewing
 12.8 Hierarchical modeling
 12.9 Projections
 12.10 Hidden surface removal
 12.11 Shading and rendering

13. Basic Electrical & Electronics
 13.1 Electrical
 13.1.1 Basic Circuit Theory
 13.1.2 AC circuit Fundamentals
 13.1.3 Magnetic circuits and Transformers
 13.1.4 Transient Analysis, Filters
13.2 **Electronics**
13.2.1 Semiconductors, Diodes and Diode Circuits, Transistors,
13.2.2 Transistor modeling
13.2.3 Biasing and Amplification
13.2.4 Small Signal amplifiers and frequency response
13.2.5 Large signal amplifiers, feedback amplifiers and Oscillators
13.2.6 Operational amplifiers

14. **Principles of Electronic Communications**
14.1 Block Diagram of analog/digital communication system
14.2 Analog and Digital modulation techniques
14.3 Fundamentals of Error Detection and Correction
14.4 Performance evaluation of analog and digital communication systems: SNR and BER

15. **Emerging Technology and Electives**
15.1 Modeling and simulation
15.2 Parallel and distributed computing
15.3 High speed networks
15.4 Artificial Neural Network and Computer Vision
15.5 Adaptive web technology
15.6 Software Architecture
15.7 Distributed Object technology (ORB, DCOM)
15.8 Speech signal processing
15.9 Cryptography and network security
15.10 E-commerce
15.11 Software project management
15.12 Embedded systems
15.13 Image processing
15.14 Multimedia
15.15 Expert system
15.16 GIS/ Remote sensing/ GPS

16. **Reasoning**
16.1 **Analytical and logical reasoning**
16.2 **Quantitative Test**

This section covers the examinee's reasoning aptitude as well as the presence of mind. Reasoning is to be done by reading a passage and answering the multiple choice question where as quantitative test is carried out by solving the mathematical problem (which needs no advanced level mathematical background)